LightGBM 中文文档

LightGBM 是一个梯度 boosting 框架, 使用基于学习算法的决策树. 它是分布式的, 高效的, 装逼的, 它具有以下优势: * 速度和内存使用的优化 * 减少分割增益的计算量 * 通过直方图的相减来进行进一步的加速 * 减少内存的使用 减少并行学习的通信代价 * 稀疏优化 * 准确率的优化 * Leaf-wise (Best-first) 的决策树生长策略 * 类别特征值的最优分割 * 网络通信的优化 * 并行学习的优化 * 特征并行 * 数据并行 * 投票并行 * GPU 支持可处理大规模数据

更多有关 LightGBM 特性的详情, 请参阅: LightGBM 特性.

文档地址

项目负责人

项目贡献者

下载

Docker

docker pull apachecn0/lightgbm-doc-zh
docker run -tid -p <port>:80 apachecn0/lightgbm-doc-zh
# 访问 http://localhost:{port} 查看文档

PYPI

pip install lightgbm-doc-zh
lightgbm-doc-zh <port>
# 访问 http://localhost:{port} 查看文档

NPM

npm install -g lightgbm-doc-zh
lightgbm-doc-zh <port>
# 访问 http://localhost:{port} 查看文档

贡献指南

为了使项目更加便于维护,我们将文档格式全部转换成了 Markdown,同时更换了页面生成器。后续维护工作将完全在 Markdown 上进行。

小部分格式仍然存在问题,主要是链接和表格。需要大家帮忙找到,并提 PullRequest 来修复。

建议反馈

组织学习交流群

机器学习交流群: 629470233 (2000人)

大数据交流群: 214293307 (2000人)

了解我们: http://www.apachecn.org/organization/209.html

加入组织: http://www.apachecn.org/organization/209.html

更多信息请参阅: http://www.apachecn.org/organization/348.html