计算原始分数预测的特征贡献分量。
lgb.interprete(model, data, idxset, num_iteration = NULL)
对于回归、二元分类和排序模型,一个包含以下列的 data.table
列表:
Feature
: 模型中的特征名称。
Contribution
: 此特征分割的总贡献。
对于多元分类,一个包含 Feature 列和对应于每个类别的 Contribution 列的 data.table
列表。
# \donttest{
Logit <- function(x) log(x / (1.0 - x))
data(agaricus.train, package = "lightgbm")
train <- agaricus.train
dtrain <- lgb.Dataset(train$data, label = train$label)
set_field(
dataset = dtrain
, field_name = "init_score"
, data = rep(Logit(mean(train$label)), length(train$label))
)
data(agaricus.test, package = "lightgbm")
test <- agaricus.test
params <- list(
objective = "binary"
, learning_rate = 0.1
, max_depth = -1L
, min_data_in_leaf = 1L
, min_sum_hessian_in_leaf = 1.0
, num_threads = 2L
)
model <- lgb.train(
params = params
, data = dtrain
, nrounds = 3L
)
#> [LightGBM] [Info] Number of positive: 3140, number of negative: 3373
#> [LightGBM] [Info] Auto-choosing row-wise multi-threading, the overhead of testing was 0.000789 seconds.
#> You can set `force_row_wise=true` to remove the overhead.
#> And if memory is not enough, you can set `force_col_wise=true`.
#> [LightGBM] [Info] Total Bins 232
#> [LightGBM] [Info] Number of data points in the train set: 6513, number of used features: 116
#> [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
#> [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
#> [LightGBM] [Warning] No further splits with positive gain, best gain: -inf
tree_interpretation <- lgb.interprete(model, test$data, 1L:5L)
# }